Unified Engineering	Spring 2008
Fluids Quiz 1	Page $1 / 4$

1. $(30 \%) \mathrm{A}$ thin airfoil has an adjustable camberline defined by

$$
Z(x)=2 h \frac{x}{c}\left(\frac{1}{2}-\frac{x}{c}\right)
$$

where h is the downward camberline deflection at the trailing edge. The freestream V_{∞} is at some arbitrary α as shown.
a) Determine the coefficients $A_{0}, A_{1}, A_{2}, \ldots$ for this camberline and α.
b) Determine the airfoil's c_{ℓ} and $c_{m_{c / 4}}$, as functions of h / c and α.
c) Determine the zero-lift angle $\alpha_{L=0}$, as a function of h / c.
2. (20%) At a freestream angle of attack of $\alpha=0.1 \mathrm{rad}$, the flow around a particular thin airfoil airfoil is represented by the following vortex sheet strength:

$$
\gamma(\theta)=V_{\infty}(1.0 \sin \theta+0.4 \sin 2 \theta)
$$

where $x / c=(1-\cos \theta) / 2$ as usual.
a) Determine the airfoil's c_{ℓ} and $c_{m_{c / 4}}$.
b) Determine the camberline slope $d Z / d x$ that the airfoil must have at the midchord location $x=c / 2$.
3. (30%) A wing to be designed is to have the following circulation distribution in level flight:

$$
\Gamma(y)=V_{\infty} b(0.05 \sin \theta-0.005 \sin 3 \theta)
$$

where $2 y / b=\cos \theta$ as usual. We will assume $\rho=1, V_{\infty}=1, b=2$.
Note also: $\sin 3 \theta=\sin \theta\left(4 \cos ^{2} \theta-1\right)$
a) Determine the lift L and induced drag D_{i} of this wing.
b) Determine the downwash velocity $w(y)$, and sketch it roughly.
c) The wing is to have a spanwise-constant $c_{\ell}=1$. Determine the necessary planform $c(y)$.
d) The wing and fuselage have a common reference axis which is to be horizontal in level flight. Determine the necessary aerodynamic twist distribution $\alpha_{\text {aero }}(y)$ relative to this reference axis.
4. (20%) An elliptically-loaded wing with aspect ratio $A R=20$ has an airfoil with the following 2D profile drag polar:

$$
c_{d}\left(c_{\ell}\right)=0.015+0.01 c_{\ell}^{2}
$$

We will assume that $c_{\ell}=C_{L}$.
a) Write an expression for the overall drag coefficient C_{D} of the wing.
b) Determine the minimum power coefficient $C_{D} / C_{L}^{3 / 2}$ that this wing can produce.

