1. (30 %) A thin airfoil has an adjustable camberline defined by

where h is the downward camberline deflection at the trailing edge. The freestream V_{∞} is at some arbitrary α as shown.

- a) Determine the coefficients A_0, A_1, A_2, \ldots for this camberline and α .
- b) Determine the airfoil's c_ℓ and $c_{m_{c/4}},$ as functions of h/c and $\alpha.$
- c) Determine the zero-lift angle $\alpha_{L=0}$, as a function of h/c.

Unified Engineering	Spring 2008
Fluids Quiz 1	Page $2/4$

2. (20 %) At a freestream angle of attack of $\alpha = 0.1$ rad, the flow around a particular thin airfoil airfoil is represented by the following vortex sheet strength:

 $\gamma(\theta) = V_{\infty} (1.0 \sin \theta + 0.4 \sin 2\theta)$

where $x/c = (1 - \cos \theta)/2$ as usual.

a) Determine the airfoil's c_{ℓ} and $c_{m_{c/4}}$.

b) Determine the camberline slope dZ/dx that the airfoil must have at the midchord location x = c/2.

3. (30 %) A wing to be designed is to have the following circulation distribution in level flight:

$$\Gamma(y) = V_{\infty}b \left(0.05 \sin \theta - 0.005 \sin 3\theta\right)$$

where $2y/b = \cos \theta$ as usual. We will assume $\rho = 1$, $V_{\infty} = 1$, b = 2. Note also: $\sin 3\theta = \sin \theta \ (4 \cos^2 \theta - 1)$

a) Determine the lift L and induced drag D_i of this wing.

b) Determine the downwash velocity w(y), and sketch it roughly.

c) The wing is to have a spanwise-constant $c_{\ell} = 1$. Determine the necessary planform c(y).

d) The wing and fuselage have a common reference axis which is to be horizontal in level flight. Determine the necessary aerodynamic twist distribution $\alpha_{aero}(y)$ relative to this reference axis.

4. (20 %) An elliptically-loaded wing with a spect ratio $A\!\!R=20$ has an airfoil with the following 2D profile drag polar:

$$c_d(c_\ell) = 0.015 + 0.01c_\ell^2$$

We will assume that $c_{\ell} = C_L$.

a) Write an expression for the overall drag coefficient C_D of the wing.

b) Determine the minimum power coefficient $C_D/C_L^{3/2}$ that this wing can produce.